作者单位
摘要
1 苏州大学 附属第三医院 妇产科,江苏常州23000
2 河海大学 机电工程学院,江苏常州130
3 苏州大学 附属第三医院 病理科,江苏常州21000
为实现不同尺寸微粒的高效分离,提出一种三角形截面微流道的惯性微流控芯片,研究了微粒在流道中的聚焦与分离特性。首先,设计一种直角三角形截面结构的螺旋流道,采用精密微铣削工艺加工了流道的铝材模具,利用倒模与等离子清洗键合工艺制备微流控芯片。接着,配制三种尺寸(6 μm,10 μm和15 μm)的荧光微粒悬浮液,利用高速摄像机和荧光显微镜拍摄粒子在流道中的运动轨迹,观测不同悬浮液流量时微粒的聚焦效果。最后,对微粒聚焦轨迹图像进行堆叠分析,研究微粒的惯性聚焦与分离行为。结果表明:随着悬浮液流量的增大,6 μm粒子逐渐聚焦并向流道外壁面迁移,而10 μm和15 μm聚焦粒子束则向流道中心迁移。当悬浮液流量为1.5 mL/min时,6 μm和15 μm混合粒子实现了100%精确分离。研究结果表明,三角形截面螺旋流道可产生强偏置二次流,使不同尺寸微粒实现高效、精确分离,为细胞精准操控提供了一种新的技术手段。
微流控 惯性操控 三角形流道 粒子聚焦与分离 偏置二次流 microfluidics inertial focusing triangular channel particle focusing and separation skewed secondary flow 
光学 精密工程
2024, 32(4): 504
作者单位
摘要
西安石油大学理学院,陕西 西安710065陕西省油气资源光纤探测工程技术研究中心,陕西 西安710065陕西省油气井测控技术重点实验室,陕西 西安710065CNPC重点实验室——油藏光纤动态检测研究室,陕西 西安710065
随着光纤传感技术的不断发展,光纤布拉格光栅(Fiber Bragg Grating, FBG)振动传感器在实际应用中的复杂振动测量性能愈发优良可靠。基于FBG振动传感器的优势,简略地阐述了FBG振动传感器的工作原理,并介绍了近5年国内研发的部分悬臂梁型、膜片型、铰链型三种结构的优缺点。最后针对FBG振动传感器提出了4个方面的建议,并展望了FBG振动传感器的发展方向。
光纤布拉格光栅 振动传感器 悬臂梁 膜片 铰链 fiber Bragg grating vibration sensor cantilever beam diaphragm hinge 
红外
2023, 44(10): 0034
作者单位
摘要
1 河北大学 电子信息工程学院, 河北省数字医疗工程重点实验室,河北 保定 071000
2 天津大学 精密仪器与光电子工程学院,激光与光电子研究所,天津 300072
为实现高效太赫兹调控,迫切需要一种高效且成本低的材料。新型钙钛矿材料由于其优异的光电特性,加上钙钛矿制备工艺简单、可大批量生产等优点,非常适合作为太赫兹超材料的活性材料,通过外部激励改变活性材料的属性,可灵活调控太赫兹波。因此,选择新型钙钛矿材料外加光场调控太赫兹,分析在光场作用前(绝缘态)和在光场作用后(金属态)两种状态对单元结构太赫兹宽波段下幅值和相位的影响。设计出光场灵活调控的钙钛矿基1 bit太赫兹编码超表面结构,该结构由有机无机杂化钙钛CH3NH3PbI3(MAPbI3)、聚酰亚胺和铝构成。通过CST仿真结果显示,该超表面结构在光场的调控下能够实现宽谱(0.1、1、2、6 THz)太赫兹波的180°相位差变化,经过超表面编码结构的设计,同一编码序列实现远场波束的变换。研究结果表明,基于光场操控钙钛矿材料的编码超表面为实现灵活的太赫兹波调控提供了新的思路,在太赫兹通信、安检、生物医学成像等方面具有巨大的应用潜力。
太赫兹 钙钛矿 光场调控 编码超表面 相位 terahertz perovskite light field regulation coding metasurface phase 
强激光与粒子束
2023, 35(12): 129001
陈毅 1孙俊杰 1,2,*于晶华 1,2姚志焕 1,2[ ... ]陈飞 1,*
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所 激光与物质相互作用国家重点实验室,吉林 长春 130033
2 中国科学院大学, 北京 100049
为了明晰碟片多通放大器的腔体设计方法,本文对不同类型的碟片多通放大器做归纳与总结,共归纳出4f中继成像、谐振腔设计/光学傅立叶变换、近准直光束传输与其他共4种设计理念的多通放大器。介绍了每种放大器的设计方法并详尽列举了研究现状。通过对比4种类型的碟片多通放大器,发现不同种类的多通放大器各有优缺点。4f中继成像需要真空环境以避免焦点处的气体电离,因此机械装置与调试难度较大;谐振腔设计/光学傅立叶变换概念多通放大器的镜片处存在较小光斑,因此较适用于较低能量的多通放大器;近准直光束传输方法由于不需要真空环境,具备很大的发展潜力,但需要精准控制激光运转状态下的碟片面形,难度也较大。因此,从激光器设计角度来看,需要对碟片多通放大器继续进行优化设计,从而同时实现使用场景的多元化与输出能量的可持续拓展。
激光 碟片 多通放大器 腔体设计 激光放大器 laser thin-disk multi-pass amplifier cavity-design laser amplifier 
中国光学
2023, 16(5): 996
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 中国人民解放军96035部队,吉林 吉林 132101
机载激光雷达是实现远距离大气精准监测的重要手段,CO2激光器工作谱段与部分大气污染物和化学物质吸收谱一致,是大气监测激光雷达的重要光源。面向机载要求,在控制体积重量的条件下实现−40 °C~55 °C宽温域工作是机载CO2激光器温控系统的设计难点。因此,本文提出一种以激光器性能和环境温度为设计输入,半导体热电制冷与强制风冷相结合的闭环温控方法。根据激光器、半导体热电制冷和强制风冷等的结构与传热特性,建立温控方法的有限元模型,基于此模型对激光器温控性能进行研究。对于55 °C高温环境,温控系统工作25 min后,激光器温度控制在40 °C;对于−40 °C低温环境,温控系统在工作20 min后,激光器温度控制在25 °C,满足激光器正常工作要求。根据激光器及建立的温控方法,开展高低温环境下激光器工作能力实验研究,采集实验过程中的激光器温度数据,测量高低温条件下激光输出能力。实验结果表明:实测激光器温度与有限元仿真温度数据基本吻合,两者误差小于10%;采用所提出的温控方法,激光器在高低温条件下可以正常工作,输出功率与室温条件下一致。
CO2激光器 宽温域 半导体热电制冷 散热结构 温控方法 CO2 laser wide temperature range thermo-electric cooler heat dissipation structure temperature control method 
中国光学
2023, 16(2): 390
作者单位
摘要
中国工程物理研究院 流体物理研究所,脉冲功率科学与技术重点实验室,四川 绵阳 621900
针对紧凑型高功率脉冲驱动源的重复频率充电需求,开展了基于LC全桥串联谐振原理的恒流充电技术研究,并根据紧凑型Marx脉冲功率源的工作方式开展了电源关键参数设计,完成了一种正负双极性充电的紧凑型高压电源研制,实现20 ms内对单边等效负载电容为0.15 μF的双极性Marx驱动源充电至±45 kV,平均充电功率大于15.5 kW。该电源采用单个高频高压变压器实现了正负双极性高电压同步输出;采用变压器、整流电路、隔离保护电路、电压检测电路一体化绝缘封装设计,既减小了装置体积又降低了高压绝缘风险;通过隔离保护、电磁屏蔽等设计有效解决了Marx发生器放电过程中瞬时高压信号对电源控制系统的干扰和损伤。
双极性输出 重频充电 串联谐振 脉冲功率技术 bipolar output repetitive charging series resonant pulse power technology 
强激光与粒子束
2023, 35(3): 035001
陈飞 1,*于晶华 1,2陈毅 1,**孙俊杰 1,2,***[ ... ]张阔 1
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室,吉林 长春 130033
2 中国科学院大学,北京 100049
基于Yb∶YAG单碟片模块设计并搭建了激光再生放大器,实现了重复频率为1 kHz、脉冲能量为107 mJ、脉冲宽度为1.2 ns的近衍射极限激光输出,x的光束质量因子(Mx2)和y方向的光束质量因子(My2)分别为1.07与1.05,光光转换效率为11%。激光中心波长为1031.7 nm,光谱宽度为2.04 nm,该光谱宽度支持将激光的脉宽压缩至735 fs。据我们所知,这是国内首次使用单碟片激光再生放大器实现重复频率为1 kHz、单脉冲能量为107 mJ的激光输出。
激光器 碟片 再生放大器 Yb∶YAG 啁啾脉冲 
中国激光
2023, 50(5): 0515001
任跃英 2,*牛晨 1王京京 1杨鹤 1[ ... ]刘志 2
作者单位
摘要
1 吉林农业大学人参新品种选育与开发国家地方联合工程研究中心, 吉林 长春 130118
2 吉林农业大学中药材学院, 吉林 长春 130118
人参主要依靠大田栽培, 耗时长, 利用植物组织培养技术不仅可以缩短育种年限, 还可以用来生产次生代谢产物。 在组织培养中, 光质对于药用植物次生代谢产物的影响受到了人们广泛关注。 以人参愈伤组织为试材, 采用超高效液相色谱法, 研究了不同光质(包括红光、 红蓝光、 蓝光、 绿光、 黄绿光)对人参愈伤组织生长状态、 总皂苷及9种皂苷单体Rg1, Re, Rf, Ro, Rb1, Rc, Rb2, Rb3, Rd含量的影响。 结果表明: 绿光加速人参愈伤组织老化, 促进次生代谢产物的积累, 而蓝光对人参愈伤组织生长有促进作用; 红光和绿光对总皂苷作用不明显, 且蓝光、 红蓝光(1:1)、 黄绿光(1:1)对人参皂苷转化与合成起到明显的抑制作用; 与对照组相比, 绿光处理后Rg1、 Rf含量均偏高, 其含量分别为4.063和1.194 mg·g-1, 对Rg1、 Rf人参皂苷单体含量有促进作用。 表明不同光质对人参愈伤组织生长及皂苷含量有不同的影响, 可以通过绿光处理来获得人参单体皂苷Rg1和Rf。 该研究旨在探究光质对人参愈伤组织生理生化的影响, 提高人参皂苷含量, 为工业化生产提供理论依据。
人参 愈伤组织 光质 人参皂苷 超高效液相色谱 Panax ginseng Callus Light quality Ginsenosides Ultra performance liquid chromatography 
光谱学与光谱分析
2022, 42(4): 1318
方平 1,2杨鹤 1,3牛晨 1,3董兴敏 1,3[ ... ]刘志 3
作者单位
摘要
1 吉林农业大学人参新品种选育与开发国家地方联合工程研究中心, 吉林 长春 130118
2 重庆三峡医药高等专科学校, 重庆 404120
3 吉林农业大学中药材学院, 吉林 长春 130118
主要针对不同光质对人参种苗叶片生长影响的研究, 从而探究人参工厂化育苗的优良光质, 为提高种苗质量提供基础依据。 试验设置六组处理, 分别为白光(W, 作为对照)、 蓝光(B, 450~470 nm)、 红光(R, 625~655 nm) 、 绿光(G, 510~530 nm)、 黄光(Y, 585~605 nm)、 红蓝光(RB, R/B=4∶1), 白光作为对照光源。 试验结果表明, 不同光质下生长的人参种苗叶片在外观形态、 生理特性和细胞结构上都显现明显的差异。 在叶面积的生长过程中, 红蓝光和白光下的叶面积较大, 红光次之, 蓝光下最小; 在叶绿素含量的分布中, 添加蓝光的处理组明显高于对照组, 说明蓝光对叶绿素的合成有关键作用, 红光下叶绿素含量最低, 表明红光不利于叶绿素的合成。 蓝光、 黄光和白光下叶绿素荧光电子效率较高, 而在气孔特性上, 绿光、 红光和白光的气孔数量较多, 单个气孔面积蓝光和红蓝光下较大。 通过电镜下叶片超微结构的观察发现, 不同光质对叶片的细胞结构产生了明显的影响, 主要表现在线粒体和叶绿体的分布以及叶绿体的结构上, 其中白光和蓝光照射下的线粒体和叶绿体数量较多, 叶绿体片层结构垛叠数上也更紧凑丰富。 另外, 不同光质下生长的幼苗叶片衰老进程也产生了明显的差异, 蓝光、 红蓝光照射下衰老速度较快。 综上所述, 不同光质对于人参种苗叶片生长的影响各不相同, 蓝光和红蓝复合光照射具有较多的优良性状和较好的生理参数, 因此在应用和实践上还需要根据具体的需求制定相应的光质配比策略, 以达到壮苗丰产的目的。
光质 人参 生理特性 超微结构 Light quality Ginseng Physiological properties Ultrastructure 
光谱学与光谱分析
2022, 42(12): 3864
作者单位
摘要
1 公牛集团股份有限公司, 宁波 315311
2 陕西科技大学 材料科学与工程学院, 西安 710021
3 广东工业大学 机电工程学院, 广州 510006
为了解决厨房用开关面板抗油污沉积的问题, 采用飞秒激光在开关面板表面制备出微纳米复合结构表面, 实现了超疏水性, 进而减少油污沉积附着,研究了聚碳酸酯(PC)开关面板的激光烧蚀阈值、不同激光工艺参数和微纳结构对表面浸润性的影响。结果表明, PC开关面板在515nm波段下的烧蚀阈值为1.66μJ; 当激光能量为1.6μJ、扫描速率为200mm/s、搭接率为1/3线宽时, 其表面液滴接触角为161°, 表现出超疏水特性。经激光表面处理后的PC面板具有超疏水性,可实现表面的自清洁作用, 显示出巨大的市场潜力。
激光技术 微纳结构的超疏水性 飞秒激光加工 开关面板 laser technique superhydrophobic of micro/nano structure femtosecond laser process switch panel 
激光技术
2022, 46(6): 796

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!